Closed hereditary coreflective subcategories in categories of Tychonoff spaces

Veronika Pitrová

Jan Evangelista Purkyně University in Ústí nad Labem

Winter School in Abstract Analysis 2020

<ロト < 回 > < 臣 > < 臣 > 三 三 の Q ()

• $\mathbf{ZD} \subseteq \mathbf{A} \subseteq \mathbf{Tych}$

- $\mathbf{ZD} \subseteq \mathbf{A} \subseteq \mathbf{Tych}$
- full: $X, Y \in \mathbf{A}, f : X \to Y \Rightarrow f \in \mathbf{A}$

(日) (문) (문) (문)

E

- $\mathbf{ZD} \subseteq \mathbf{A} \subseteq \mathbf{Tych}$
- full: $X, Y \in \mathbf{A}, f : X \to Y \Rightarrow f \in \mathbf{A}$
- isomorphism-closed: $X \in \mathbf{A}, X \cong Y \Rightarrow Y \in \mathbf{A}$

Image: Image:

- 4 B b - 4 B b

- $\mathbf{ZD} \subseteq \mathbf{A} \subseteq \mathbf{Tych}$
- full: $X, Y \in \mathbf{A}, f : X \to Y \Rightarrow f \in \mathbf{A}$
- isomorphism-closed: $X \in \mathbf{A}, X \cong Y \Rightarrow Y \in \mathbf{A}$
- $\bullet\,$ epireflective in ${\bf Top}\,$

- 4 B b - 4 B b

Reflective subcategories of Top

• A is reflective in **Top**:

for each $X \in \text{Top}$ there exists an $rX \in \mathbf{A}$ and a map $r_X : X \to rX$ such that for every $Y \in \mathbf{A}$ and every $f : X \to Y$ there exists a unique $\overline{f} : rX \to Y$ such that the following diagram commutes:

Reflective subcategories of Top

• A is reflective in **Top**:

for each $X \in \text{Top}$ there exists an $rX \in \mathbf{A}$ and a map $r_X : X \to rX$ such that for every $Y \in \mathbf{A}$ and every $f : X \to Y$ there exists a unique $\overline{f} : rX \to Y$ such that the following diagram commutes:

• epireflective: every reflection is an epimorphism

Reflective subcategories of Top

• A is reflective in **Top**:

for each $X \in \text{Top}$ there exists an $rX \in \mathbf{A}$ and a map $r_X : X \to rX$ such that for every $Y \in \mathbf{A}$ and every $f : X \to Y$ there exists a unique $\overline{f} : rX \to Y$ such that the following diagram commutes:

epireflective: every reflection is an epimorphism
 ⇔ closed under the formation of subspaces and products

・四ト ・ヨト ・ヨト

Coreflective subcategories of A

• **B** is coreflective in **A**:

for each $X \in \mathbf{A}$ there exists a $cX \in \mathbf{B}$ and a map $c_X : cX \to X$ such that for every $Y \in \mathbf{B}$ and every $f : Y \to X$ there exists a unique $\overline{f} : Y \to cX$ such that the following diagram commutes:

Coreflective subcategories of A

• **B** is coreflective in **A**:

for each $X \in \mathbf{A}$ there exists a $cX \in \mathbf{B}$ and a map $c_X : cX \to X$ such that for every $Y \in \mathbf{B}$ and every $f : Y \to X$ there exists a unique $\overline{f} : Y \to cX$ such that the following diagram commutes:

 coreflective ⇔ closed under the formation of sums and extremal quotient objects

▶ 《 문 ▶ 《 문 ▶

Coreflective subcategories of A

• **B** is coreflective in **A**:

for each $X \in \mathbf{A}$ there exists a $cX \in \mathbf{B}$ and a map $c_X : cX \to X$ such that for every $Y \in \mathbf{B}$ and every $f : Y \to X$ there exists a unique $\overline{f} : Y \to cX$ such that the following diagram commutes:

- coreflective \Leftrightarrow closed under the formation of sums and extremal quotient objects
- closed hereditary coreflective (CHC): closed under the formation of closed subspaces, sums and extremal quotient objects

• **Dis**: discrete spaces

- **Dis**: discrete spaces
- $\mathbf{Top}(\alpha) \cap \mathbf{A}$

- **Dis**: discrete spaces
- $\mathbf{Top}(\alpha) \cap \mathbf{A}$
 - $\alpha \geq \omega_1$ is a regular cardinal

- **Dis**: discrete spaces
- $\mathbf{Top}(\alpha) \cap \mathbf{A}$
 - $\alpha \ge \omega_1$ is a regular cardinal
 - **Top**(α): such spaces that the intersection of less than α open subsets is open

- **Dis**: discrete spaces
- $\mathbf{Top}(\alpha) \cap \mathbf{A}$
 - $\alpha \ge \omega_1$ is a regular cardinal
 - **Top**(α): such spaces that the intersection of less than α open subsets is open

Theorem

If sequential cardinals do not exist, then there are no other CHC subcategories.

- **Dis**: discrete spaces
- $\mathbf{Top}(\alpha) \cap \mathbf{A}$
 - $\alpha \geq \omega_1$ is a regular cardinal
 - **Top**(α): such spaces that the intersection of less than α open subsets is open

Theorem

If sequential cardinals do not exist, then there are no other CHC subcategories.

• κ is sequential if there exists a sequentially continuous non-continuous map $f: 2^{\kappa} \to \mathbb{R}$

A B < A B <</p>

The spaces $C(\alpha)$

• α : regular cardinal

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup \{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup \{\alpha\}) \setminus U| < \alpha$

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup \{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup \{\alpha\}) \setminus U| < \alpha$

- α: regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup \{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup \{\alpha\}) \setminus U| < \alpha$

Proposition

The CHC hull of $C(\alpha)$ in **A** is $\mathbf{Top}(\alpha) \cap \mathbf{A}$.

Proposition (Sleziak, 2008)

If X is not a sum of connected spaces then there exists a quotient map $f: X \to P$, where P is a prime T_2 -space and $P \prec C(\alpha)$.

Image: Image:

Proposition (Sleziak, 2008)

If X is not a sum of connected spaces then there exists a quotient map $f: X \to P$, where P is a prime T_2 -space and $P \prec C(\alpha)$.

Proposition (Sleziak, 2008)

If an AD-class **B** in an epireflective subcategory $\mathbf{A} \neq \mathbf{Ind}$ contains a prime T_2 -space then it contains $C(\alpha)$ for some regular cardinal number α .

Proposition (Sleziak, 2008)

If X is not a sum of connected spaces then there exists a quotient map $f: X \to P$, where P is a prime T_2 -space and $P \prec C(\alpha)$.

Proposition (Sleziak, 2008)

If an AD-class **B** in an epireflective subcategory $\mathbf{A} \neq \mathbf{Ind}$ contains a prime T_2 -space then it contains $C(\alpha)$ for some regular cardinal number α .

Corollary

If **B** is CHC in **A** and it contains a space that is not a sum of connected spaces, then it contains $C(\alpha)$ for some regular α .

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ へ ()</p>

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B} \mbox{ is CHC in } {\bf A}, \mbox{ } {\bf B} \neq {\bf Dis}$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

B is CHC in **A**, $\mathbf{B} \neq \mathbf{Dis}$ 1. $\mathbf{A} = \mathbf{ZD}$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

- 1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$
 - **B** contains $C(\alpha)$ for some regular cardinals α

A B < A B <</p>

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

- 1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$
 - **B** contains $C(\alpha)$ for some regular cardinals α
 - α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

- 1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$
 - **B** contains $C(\alpha)$ for some regular cardinals α
 - α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

8 / 10

 \mathbf{B} is CHC in $\mathbf{A}, \mathbf{B} \neq \mathbf{Dis}$

- 1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$
 - **B** contains $C(\alpha)$ for some regular cardinals α
 - α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
- 2. $\mathbf{A} \neq \mathbf{ZD}$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

- ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$
 - 1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$
 - **B** contains $C(\alpha)$ for some regular cardinals α
 - α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
 - 2. $\mathbf{A} \neq \mathbf{ZD}$
 - $X \in \mathbf{B}$ is not a sum of connected spaces: **B** contains some $C(\alpha)$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 \mathbf{B} is CHC in $\mathbf{A}, \mathbf{B} \neq \mathbf{Dis}$

1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$

- **B** contains $C(\alpha)$ for some regular cardinals α
- α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
- 2. $\mathbf{A} \neq \mathbf{ZD}$
 - $X \in \mathbf{B}$ is not a sum of connected spaces: **B** contains some $C(\alpha)$
 - $X \in \mathbf{B}$ is a sum of connected spaces:

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$

- **B** contains $C(\alpha)$ for some regular cardinals α
- α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
- 2. $\mathbf{A} \neq \mathbf{ZD}$
 - $X \in \mathbf{B}$ is not a sum of connected spaces: **B** contains some $C(\alpha)$
 - X ∈ B is a sum of connected spaces:
 X has a subspace P that is a prime space

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$

- **B** contains $C(\alpha)$ for some regular cardinals α
- α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
- 2. $\mathbf{A} \neq \mathbf{ZD}$
 - $X \in \mathbf{B}$ is not a sum of connected spaces: **B** contains some $C(\alpha)$
 - X ∈ B is a sum of connected spaces:
 X has a subspace P that is a prime space there exists a quotient map q : P → C(α)

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$

- **B** contains $C(\alpha)$ for some regular cardinals α
- α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
- 2. $\mathbf{A} \neq \mathbf{ZD}$
 - $X \in \mathbf{B}$ is not a sum of connected spaces: **B** contains some $C(\alpha)$
 - X ∈ B is a sum of connected spaces:
 X has a subspace P that is a prime space there exists a quotient map q : P → C(α)
 - α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of **A** are **Dis** and **Top**(α) \cap **A**.

 ${\bf B}$ is CHC in ${\bf A},\, {\bf B} \neq {\bf Dis}$

1. $\mathbf{A} = \mathbf{Z}\mathbf{D}$

- **B** contains $C(\alpha)$ for some regular cardinals α
- α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$
- 2. $\mathbf{A} \neq \mathbf{ZD}$
 - $X \in \mathbf{B}$ is not a sum of connected spaces: **B** contains some $C(\alpha)$
 - X ∈ B is a sum of connected spaces:
 X has a subspace P that is a prime space there exists a quotient map q : P → C(α)
 - α_0 : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B} = \mathbf{Top}(\alpha_0) \cap \mathbf{A}$

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< <p>I > < A</p>

<ロト < 母 > < 臣 > < 臣 > 三 つ へ C

Theorem (Noble, 1970)

Let $X = \prod_{i \in I} X_i$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$ -space. If each X_i is locally pseudocompact, then X is an $s_{\mathbb{R}}$ -space if and only if |I| is non-sequential.

Theorem (Noble, 1970)

Let $X = \prod_{i \in I} X_i$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$ -space. If each X_i is locally pseudocompact, then X is an $s_{\mathbb{R}}$ -space if and only if |I| is non-sequential.

• $s_{\mathbb{R}}$ -space: every sequentially continuous map $X \to \mathbb{R}$ is continuous

Theorem (Noble, 1970)

Let $X = \prod_{i \in I} X_i$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$ -space. If each X_i is locally pseudocompact, then X is an $s_{\mathbb{R}}$ -space if and only if |I| is non-sequential.

- $s_{\mathbb{R}}$ -space: every sequentially continuous map $X \to \mathbb{R}$ is continuous
 - coreflective hull of the space $C(\omega_0)$

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem (Noble, 1970)

Let $X = \prod_{i \in I} X_i$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$ -space. If each X_i is locally pseudocompact, then X is an $s_{\mathbb{R}}$ -space if and only if |I| is non-sequential.

- $s_{\mathbb{R}}$ -space: every sequentially continuous map $X \to \mathbb{R}$ is continuous
 - coreflective hull of the space $C(\omega_0)$
- every prime T_2 -space P is homeomorphic to a closed subspace of a zero-dimensional $s_{\mathbb{R}}$ -space:

Theorem (Noble, 1970)

Let $X = \prod_{i \in I} X_i$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$ -space. If each X_i is locally pseudocompact, then X is an $s_{\mathbb{R}}$ -space if and only if |I| is non-sequential.

- $s_{\mathbb{R}}$ -space: every sequentially continuous map $X \to \mathbb{R}$ is continuous
 - coreflective hull of the space $C(\omega_0)$
- every prime T_2 -space P is homeomorphic to a closed subspace of a zero-dimensional $s_{\mathbb{R}}$ -space: $P \to \prod_{i \in I} X_i$

Theorem (Noble, 1970)

Let $X = \prod_{i \in I} X_i$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$ -space. If each X_i is locally pseudocompact, then X is an $s_{\mathbb{R}}$ -space if and only if |I| is non-sequential.

- $s_{\mathbb{R}}$ -space: every sequentially continuous map $X \to \mathbb{R}$ is continuous
 - coreflective hull of the space $C(\omega_0)$
- every prime T_2 -space P is homeomorphic to a closed subspace of a zero-dimensional $s_{\mathbb{R}}$ -space: $P \to \prod_{i \in I} X_i$
- a space X is a quotient of the sum of its prime factors: $\coprod_{a \in X} X_a \to X$

《曰》 《圖》 《臣》 《臣》

Thank you for your attention.

