Closed hereditary coreflective subcategories in categories of Tychonoff spaces

Veronika Pitrová

Jan Evangelista Purkyně University in Ústí nad Labem

Winter School in Abstract Analysis 2020

Categories of Tychonoff spaces

Categories of Tychonoff spaces

- $\mathbf{Z D} \subseteq \mathbf{A} \subseteq$ Tych

Categories of Tychonoff spaces

- $\mathbf{Z D} \subseteq \mathbf{A} \subseteq$ Tych
- full: $X, Y \in \mathbf{A}, f: X \rightarrow Y \Rightarrow f \in \mathbf{A}$

Categories of Tychonoff spaces

- $\mathbf{Z D} \subseteq \mathbf{A} \subseteq$ Tych
- full: $X, Y \in \mathbf{A}, f: X \rightarrow Y \Rightarrow f \in \mathbf{A}$
- isomorphism-closed: $X \in \mathbf{A}, X \cong Y \Rightarrow Y \in \mathbf{A}$

Categories of Tychonoff spaces

- $\mathbf{Z D} \subseteq \mathbf{A} \subseteq$ Tych
- full: $X, Y \in \mathbf{A}, f: X \rightarrow Y \Rightarrow f \in \mathbf{A}$
- isomorphism-closed: $X \in \mathbf{A}, X \cong Y \Rightarrow Y \in \mathbf{A}$
- epireflective in Top

Reflective subcategories of Top

- A is reflective in Top:
for each $X \in \mathbf{T o p}$ there exists an $r X \in \mathbf{A}$ and a map $r_{X}: X \rightarrow r X$ such that for every $Y \in \mathbf{A}$ and every $f: X \rightarrow Y$ there exists a unique $\bar{f}: r X \rightarrow Y$ such that the following diagram commutes:

Reflective subcategories of Top

- A is reflective in Top:
for each $X \in \mathbf{T o p}$ there exists an $r X \in \mathbf{A}$ and a map $r_{X}: X \rightarrow r X$ such that for every $Y \in \mathbf{A}$ and every $f: X \rightarrow Y$ there exists a unique $\bar{f}: r X \rightarrow Y$ such that the following diagram commutes:

- epireflective: every reflection is an epimorphism

Reflective subcategories of Top

- A is reflective in Top: for each $X \in \mathbf{T o p}$ there exists an $r X \in \mathbf{A}$ and a map $r_{X}: X \rightarrow r X$ such that for every $Y \in \mathbf{A}$ and every $f: X \rightarrow Y$ there exists a unique $\bar{f}: r X \rightarrow Y$ such that the following diagram commutes:

- epireflective: every reflection is an epimorphism \Leftrightarrow closed under the formation of subspaces and products

Coreflective subcategories of A

- B is coreflective in \mathbf{A} :
for each $X \in \mathbf{A}$ there exists a $c X \in \mathbf{B}$ and a map $c_{X}: c X \rightarrow X$ such that for every $Y \in \mathbf{B}$ and every $f: Y \rightarrow X$ there exists a unique $\bar{f}: Y \rightarrow c X$ such that the following diagram commutes:

Coreflective subcategories of A

- \mathbf{B} is coreflective in \mathbf{A} :
for each $X \in \mathbf{A}$ there exists a $c X \in \mathbf{B}$ and a map $c_{X}: c X \rightarrow X$ such that for every $Y \in \mathbf{B}$ and every $f: Y \rightarrow X$ there exists a unique $\bar{f}: Y \rightarrow c X$ such that the following diagram commutes:

- coreflective \Leftrightarrow closed under the formation of sums and extremal quotient objects

Coreflective subcategories of A

- B is coreflective in \mathbf{A} :
for each $X \in \mathbf{A}$ there exists a $c X \in \mathbf{B}$ and a map $c_{X}: c X \rightarrow X$ such that for every $Y \in \mathbf{B}$ and every $f: Y \rightarrow X$ there exists a unique $\bar{f}: Y \rightarrow c X$ such that the following diagram commutes:

- coreflective \Leftrightarrow closed under the formation of sums and extremal quotient objects
- closed hereditary coreflective (CHC): closed under the formation of closed subspaces, sums and extremal quotient objects

Examples

- Dis: discrete spaces

Examples

- Dis: discrete spaces
- $\boldsymbol{\operatorname { T o p }}(\alpha) \cap \mathbf{A}$

Examples

- Dis: discrete spaces
- $\boldsymbol{\operatorname { T o p }}(\alpha) \cap \mathbf{A}$
- $\alpha \geq \omega_{1}$ is a regular cardinal

Examples

- Dis: discrete spaces
- $\boldsymbol{\operatorname { T o p }}(\alpha) \cap \mathbf{A}$
- $\alpha \geq \omega_{1}$ is a regular cardinal
- $\operatorname{Top}(\alpha)$: such spaces that the intersection of less than α open subsets is open

Examples

- Dis: discrete spaces
- $\boldsymbol{\operatorname { T o p }}(\alpha) \cap \mathbf{A}$
- $\alpha \geq \omega_{1}$ is a regular cardinal
- $\operatorname{Top}(\alpha)$: such spaces that the intersection of less than α open subsets is open

Theorem

If sequential cardinals do not exist, then there are no other CHC subcategories.

Examples

- Dis: discrete spaces
- $\boldsymbol{\operatorname { T o p }}(\alpha) \cap \mathbf{A}$
- $\alpha \geq \omega_{1}$ is a regular cardinal
- $\operatorname{Top}(\alpha)$: such spaces that the intersection of less than α open subsets is open

Theorem

If sequential cardinals do not exist, then there are no other CHC subcategories.

- κ is sequential if there exists a sequentially continuous non-continuous map $f: 2^{\kappa} \rightarrow \mathbb{R}$

The spaces $C(\alpha)$

The spaces $C(\alpha)$

- α : regular cardinal

The spaces $C(\alpha)$

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup\{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup\{\alpha\}) \backslash U|<\alpha$

The spaces $C(\alpha)$

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup\{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup\{\alpha\}) \backslash U|<\alpha$

The spaces $C(\alpha)$

- α : regular cardinal
- $C(\alpha)$: the space on the set $\alpha \cup\{\alpha\}$ $U \subseteq C(\alpha)$ is open $\Leftrightarrow \alpha \notin U$ or $|(\alpha \cup\{\alpha\}) \backslash U|<\alpha$

Proposition

The CHC hull of $C(\alpha)$ in \mathbf{A} is $\boldsymbol{\operatorname { T o p }}(\alpha) \cap \mathbf{A}$.

Proposition (Sleziak, 2008)

If X is not a sum of connected spaces then there exists a quotient map $f: X \rightarrow P$, where P is a prime T_{2}-space and $P \prec C(\alpha)$.

Proposition (Sleziak, 2008)

If X is not a sum of connected spaces then there exists a quotient map $f: X \rightarrow P$, where P is a prime T_{2}-space and $P \prec C(\alpha)$.

Proposition (Sleziak, 2008)

If an AD-class \mathbf{B} in an epireflective subcategory $\mathbf{A} \neq \mathbf{I n d}$ contains a prime T_{2}-space then it contains $C(\alpha)$ for some regular cardinal number α.

Proposition (Sleziak, 2008)

If X is not a sum of connected spaces then there exists a quotient map $f: X \rightarrow P$, where P is a prime T_{2}-space and $P \prec C(\alpha)$.

Proposition (Sleziak, 2008)

If an AD-class \mathbf{B} in an epireflective subcategory $\mathbf{A} \neq \mathbf{I n d}$ contains a prime T_{2}-space then it contains $C(\alpha)$ for some regular cardinal number α.

Corollary

If \mathbf{B} is CHC in \mathbf{A} and it contains a space that is not a sum of connected spaces, then it contains $C(\alpha)$ for some regular α.

The main theorem

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D}$ is

1. $\mathbf{A}=\mathbf{Z D}$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\mathbf{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D}$ is

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\mathbf{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\mathbf{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

- $X \in \mathbf{B}$ is not a sum of connected spaces: \mathbf{B} contains some $C(\alpha)$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are Dis and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\mathbf{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

- $X \in \mathbf{B}$ is not a sum of connected spaces: \mathbf{B} contains some $C(\alpha)$
- $X \in \mathbf{B}$ is a sum of connected spaces:

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are $\mathbf{D i s}$ and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\boldsymbol{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

- $X \in \mathbf{B}$ is not a sum of connected spaces: \mathbf{B} contains some $C(\alpha)$
- $X \in \mathbf{B}$ is a sum of connected spaces:
X has a subspace P that is a prime space

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are $\mathbf{D i s}$ and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D i s}$

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\boldsymbol{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

- $X \in \mathbf{B}$ is not a sum of connected spaces: \mathbf{B} contains some $C(\alpha)$
- $X \in \mathbf{B}$ is a sum of connected spaces:
X has a subspace P that is a prime space there exists a quotient map $q: \bar{P} \rightarrow C(\alpha)$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are $\mathbf{D i s}$ and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D}$ is

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\mathbf{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

- $X \in \mathbf{B}$ is not a sum of connected spaces: \mathbf{B} contains some $C(\alpha)$
- $X \in \mathbf{B}$ is a sum of connected spaces:
X has a subspace P that is a prime space there exists a quotient map $q: \bar{P} \rightarrow C(\alpha)$
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$

The main theorem

Theorem

If sequential cardinals do not exist, then the only CHC subcategories of \mathbf{A} are $\mathbf{D i s}$ and $\operatorname{Top}(\alpha) \cap \mathbf{A}$.
\mathbf{B} is $\mathbf{C H C}$ in $\mathbf{A}, \mathbf{B} \neq \mathbf{D}$ is

1. $\mathbf{A}=\mathbf{Z D}$

- B contains $C(\alpha)$ for some regular cardinals α
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\mathbf{T o p}\left(\alpha_{0}\right) \cap \mathbf{A}$

2. $\mathbf{A} \neq \mathbf{Z D}$

- $X \in \mathbf{B}$ is not a sum of connected spaces: \mathbf{B} contains some $C(\alpha)$
- $X \in \mathbf{B}$ is a sum of connected spaces:
X has a subspace P that is a prime space there exists a quotient map $q: \bar{P} \rightarrow C(\alpha)$
- α_{0} : smallest regular cardinal such that $C(\alpha) \in \mathbf{B}$ $\mathbf{B}=\boldsymbol{\operatorname { T o p }}\left(\alpha_{0}\right) \cap \mathbf{A}$

Why we need the assumption about sequential cardinals

Why we need the assumption about sequential cardinals

Theorem (Noble, 1970)

Let $X=\prod_{i \in I} X_{i}$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$-space. If each X_{i} is locally pseudocompact, then X is an $s_{\mathbb{R}}$-space if and only if $|I|$ is non-sequential.

Why we need the assumption about sequential cardinals

Theorem (Noble, 1970)

Let $X=\prod_{i \in I} X_{i}$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$-space. If each X_{i} is locally pseudocompact, then X is an $s_{\mathbb{R}}$-space if and only if $|I|$ is non-sequential.

- $s_{\mathbb{R}}$-space: every sequentially continuous map $X \rightarrow \mathbb{R}$ is continuous

Why we need the assumption about sequential cardinals

Theorem (Noble, 1970)

Let $X=\prod_{i \in I} X_{i}$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$-space. If each X_{i} is locally pseudocompact, then X is an $s_{\mathbb{R}}$-space if and only if $|I|$ is non-sequential.

- $s_{\mathbb{R}^{-}}$-space: every sequentially continuous map $X \rightarrow \mathbb{R}$ is continuous
- coreflective hull of the space $C\left(\omega_{0}\right)$

Why we need the assumption about sequential cardinals

Theorem (Noble, 1970)

Let $X=\prod_{i \in I} X_{i}$ where each X_{α} is a Tychonoff $s_{\mathbb{R}^{-}}$space. If each X_{i} is locally pseudocompact, then X is an $s_{\mathbb{R}}$-space if and only if $|I|$ is non-sequential.

- $s_{\mathbb{R}}$-space: every sequentially continuous map $X \rightarrow \mathbb{R}$ is continuous
- coreflective hull of the space $C\left(\omega_{0}\right)$
- every prime T_{2}-space P is homeomorphic to a closed subspace of a zero-dimensional $s_{\mathbb{R}}$-space:

Why we need the assumption about sequential cardinals

Theorem (Noble, 1970)

Let $X=\prod_{i \in I} X_{i}$ where each X_{α} is a Tychonoff $s_{\mathbb{R}^{-}}$space. If each X_{i} is locally pseudocompact, then X is an $s_{\mathbb{R}}$-space if and only if $|I|$ is non-sequential.

- $s_{\mathbb{R}}$-space: every sequentially continuous map $X \rightarrow \mathbb{R}$ is continuous
- coreflective hull of the space $C\left(\omega_{0}\right)$
- every prime T_{2}-space P is homeomorphic to a closed subspace of a zero-dimensional $s_{\mathbb{R}}$-space: $P \rightarrow \prod_{i \in I} X_{i}$

Why we need the assumption about sequential cardinals

Theorem (Noble, 1970)

Let $X=\prod_{i \in I} X_{i}$ where each X_{α} is a Tychonoff $s_{\mathbb{R}}$-space. If each X_{i} is locally pseudocompact, then X is an $s_{\mathbb{R}}$-space if and only if $|I|$ is non-sequential.

- $s_{\mathbb{R}}$-space: every sequentially continuous map $X \rightarrow \mathbb{R}$ is continuous
- coreflective hull of the space $C\left(\omega_{0}\right)$
- every prime T_{2}-space P is homeomorphic to a closed subspace of a zero-dimensional $s_{\mathbb{R}^{-} \text {-space: }} P \rightarrow \prod_{i \in I} X_{i}$
- a space X is a quotient of the sum of its prime factors: $\coprod_{a \in X} X_{a} \rightarrow X$

Thank you for your attention.

